IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002 659

Concise Papers

An Instance-Weighting Method
to Induce Cost-Sensitive Trees

Kai Ming Ting, Member, IEEE Computer Society

Abstract—We introduce an instance-weighting method to induce cost-sensitive
trees. It is a generalization of the standard tree induction process where only the
initial instance weights determine the type of tree to be induced—minimum error
trees or minimum high cost error trees. We demonstrate that it can be easily
adapted to an existing tree learning algorithm. Previous research provides
insufficient evidence to support the idea that the greedy divide-and-conquer
algorithm can effectively induce a truly cost-sensitive tree directly from the training
data. We provide this empirical evidence in this paper. The algorithm incorporating
the instance-weighting method is found to be better than the original algorithm in
terms of total misclassification costs, the number of high cost errors, and tree size
in two-class data sets. The instance-weighting method is simpler and more
effective in implementation than a previous method based on altered priors.

Index Terms—Cost-sensitive, decision trees, induction, greedy divide-and-
conquer algorithm, instance weighting.

4

1 INTRODUCTION

COST-SENSITIVE classifications have received much less attention
than minimum error classifications in empirical learning research.
Classifiers that minimize the number of misclassification errors are
inadequate in problems with variable misclassification costs. Many
practical classification problems have different costs associated
with different types of error. For example, in medical diagnosis,
the errors committed in diagnosing someone as healthy when they
have a life-threatening disease is usually considered to be far more
serious (thus, higher cost) than the opposite type of error—diag-
nosing someone as ill when they are in fact healthy.

A line of research in cost-sensitive tree induction employing the
greedy divide-and-conquer algorithm demands further investiga-
tion. Breiman et al. [3] describe two different methods of
incorporating variable misclassification costs into the process of
tree induction. These methods adapt the test selection criterion in
the tree growing process. Pazzani et al. [8] reported negative
empirical results when using one of Breiman et al.’s [3] formula-
tions to induce cost-sensitive trees. They found that the cost-
sensitive trees do not always have lower misclassification costs,
when presented with unseen test data, than those trees induced
without cost consideration. Using a postprocessing approach,
Webb [17] showed that applying a cost-sensitive specialization
technique to a minimum error tree can reduce its misclassification
costs by about 3 percent on average. Employing the greedy divide-
and-conquer algorithm, the research so far does not show
convincingly whether a truly cost-sensitive tree can be effectively
learned directly from the training data. We investigate this issue
specifically in this paper.

This paper presents the instance-weighting method to induce
cost-sensitive trees that seeks to minimize the number of high cost
errors and, as a consequence of that, leads to minimization of the

o The author is with the Gippsland School of Computing and Information
Technology, Monash University, Churchill, Victoria 3842, Australia.
E-mail: kaiming.ting@infotech.monash.edu.au.

Manuscript received 28 June 1999; revised 13 Sept. 2000; accepted 4 Jan.
2001; posted to Digital Library 7 Sept. 2001.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110135.

1041-4347/02/$17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

total misclassification costs in most cases. This method is inspired
by instance weight modification in boosting decision trees
developed by Quinlan [10]. Boosting generates multiple classifiers
in sequential steps. At the end of each step, the weight of each
instance in the training set is adjusted to reflect its importance for
the next induction step. These weights cause the learner to
concentrate on different instances in each step and so leads to
different classifiers. These classifiers are then combined by voting
to form a composite classifier. Boosting begins with equal initial
weights in the first step. The intuition for the cost-sensitive
induction in this paper is to have different initial weights which
reflect the (given) costs of misclassification. This effectively
influences the learner to focus on instances which have high
misclassification costs. We demonstrate that this is a viable method
and can be easily adapted to an existing learning algorithm. We
show convincingly that a truly cost-sensitive tree can be effectively
learned using this method—an algorithm incorporating the
instance-weighting method achieves a substantial reduction in
misclassification costs, the number of high cost errors, and tree size
over the same algorithm without it in two-class domains. It is also
found to be competitive with a recent program C5 [11] and better
in some aspects.

The proposed instance-weighting method changes the class
distribution such that the tree so induced is in favor of the class
with high weight/cost and is less likely to commit errors with high
cost. This usually reduces the total misclassification costs as a
consequence. Smaller trees are a natural product of the tree
induction procedure when presented with training data sets of
skewed class distribution, which is a result of weighting instances
in data sets with relatively balanced class distribution. We present
the proposed instance-weighting method in the next section.

2 COST-SENSITIVE TREE INDUCTION
VIA INSTANCE-WEIGHTING

Let N be the total number of instances from the given training set
and N; be the number of class j instances. Similarly, let N(¢) and
N;(t) be the number of instances and class j instances in node ¢ of a
decision tree. The probability that an instance is in class j given
that it falls into node ¢ is given by the ratio of the total number of
class j instances to the total number of instances in this node.

i) = = A m
2 Ni(t)

When node ¢ contains instances that belong to a mixture of classes,
the standard greedy divide-and-conquer procedure for inducing
trees (e.g., [3] and [9]) uses a test selection criterion to choose a test
at this node such that the training instances which fall into each
branch, as a result of the split, become more homogeneous. One of
the commonly used criteria is entropy, thatis, — >, p(jlt)log[p(j|t)].
At each node, the tree growing process selects a test which has the
maximum gain in entropy until the node contains only a single-
class collection of instances.

To avoid overfitting, a pruning process is employed to reduce
the size of the tree such that the estimated error is a minimum. In
short, the standard tree induction procedure seeks to produce a
minimum error tree.

Our intuition for cost-sensitive tree induction is to modify the
weight of an instance proportional to the cost of misclassifying the
class to which the instance belonged, leaving the sum of all
training instance weights still equal to N. The last condition is
important because there is no reason to alter the size of the training
set, which is equivalent to the sum of all training instance weights,

660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

N(® Wi
50 75
50 25
40 10 60 15
20 30 10 15

Fig. 1. Splitting on the same test—using unit instance weights (left) and different
instance weights (right).

while the individual instance weights are adjusted to reflect the
relative importance of instances for making future prediction with
respect to cost-sensitive classification.

Let C(j) be the cost of misclassifying a class j instance; the
weight of a class j instance can be computed as

N
) =Cj) =~ 2
w(j) = C() S CON, (2)
such that the sum of all instance weights is >, w(j)N; = N. For
C(j) > 1, w(j) has the smallest value 0 < ﬁ < 1when C(j) =
1 and the largest value e

o CH)Y N
"N

when C(j) = max;C(7).
Similar to p(j|t), pw(j|t) is defined as the ratio of the total weight
of class j instances to the total weight in node ¢:

W;(t) w(f)N;(t)

ST S w@N(0))

The standard greedy divide-and-conquer procedure for inducing
minimum error trees can then be used without modification,
except that 1W;(t) is used instead of N;(¢) in the computation of the
test selection criterion in the tree growing process and the error
estimation in the pruning process. Thus, both processes are
affected due to this change.

We modified C4.5 [9] to create C4.5CS. We only need to
initialize the training instance weights to w(j) since C4.5 has
already employed Wj(t) for the computation discussed above.'

This modification effectively converts the standard tree induc-
tion procedure that seeks to minimize the number of errors,
regardless of cost, to a procedure that seeks to minimize the
number of errors with high weight or cost. Note that minimizing the
latter does not guarantee that the total misclassification cost is
minimized; this is because the number of low cost errors is usually
increased as a result.

The advantage of this approach is that the whole process of tree
growing and tree pruning is the same as that used to induce
minimum error trees. This can be viewed as a generalization of the
standard tree induction process where only the initial instance
weights determine the type of tree to be induced—minimum error trees or
minimum high cost error trees.

Fig. 1 shows an example of a split on the same attribute test
using unit instance weights (in the left figure) and different
instance weights (in the right figure). The sum of the instance
weights for each class are shown in each node. With unit
weights, each sum is equivalent to the number of instances for

Puw (J|t)

1. C4.5 uses fractional weights for the treatment of missing values. See [9]
for details.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

each class Nj(t). This example has two equiprobable classes,
where N; = N, =50 at the root of the tree. The right figure
shows the result of the same split when C(1) =3 and C(2) = 1.
Employing (1), the weights of all instances are modified to
w(l) =1.5 and w(2) =0.5. As a result, the sums of the class j
instance weights at the root are W; =75 and W, =25. This
example shows that initializing the instance weights to w(j)
amounts to changing the class distribution of the training data.

To classify a new instance, C4.5CS predicts the class which has
the maximum weight at a leaf, as in C4.5.

Here, we describe how the cost of misclassification can be
specified in a cost matrix and how the cost matrix is related to C(j) in
(2). In a classification task of I classes, the misclassification costs can
be specified in a cost matrix of size I x I. The rows of the matrix
indicate the predicted class and the column indicates the actual
class. The off-diagonal entries contain the costs of misclassifications;
and on the diagonal lie the costs for correct classifications, which are
zero in this case since our main concern here is total misclassification
costs of an induced tree.?

Let cost(i, j) be the cost of misclassifying a class j instance as
belonging to class . In all cases, cost(i, j) = 0.0 for ¢ = j. A cost
matrix must be converted to a cost vector C(j) in order to use (2)
for instance-weighting. In this paper, we employ the form of
conversion suggested by Breiman et al. [3]:

I
Ci) = Z cost(i, j). (4)

In our experiments, without loss of generality, we impose a unity
condition—at least one cost(i,j) = 1.0, which is the minimum
misclassification cost. The only reason to have this unity condition
or normalization® is to allow us to measure the number of high cost
errors, which is defined as the number of misclassification errors
that have costs more than 1.0.

Note that the cost matrix to cost vector conversion is expected
to work well with the cost-sensitive tree induction, as described in
this section, when there are only two classes. But, it might be
inappropriate when there are more than two classes because it
collapses I x I numbers to I. In order to investigate the potential
problem due to this conversion, we explicitly divide the experi-
mental data sets into two groups: two-class and multiclass. Any
performance discrepancy between these two groups is due to this
conversion.

3 EXPERIMENTS

Four measures are used to evaluate the performance of the cost-
sensitive tree induction algorithm in this paper. They are total
misclassification costs (i.e.,

N
Z cost(predicted-class(l), actual-class(l)),
]

where N’ is the number of instances in the unseen test set), pruned
tree size (i.e., total number of internal nodes and leaves), the
number of high cost errors, and the total number of misclassifica-
tion errors on unseen data. The first and the third are the most
important measures. While the aim of cost-sensitive classification
is to minimize the total misclassification costs, it is important to
measure the number of high cost errors since the instance-

2. In general, the costs of correct classifications can be nonzero.
Minimizing the costs of correct classifications is a different issue outside
the scope of this paper.

3. Note that an arbitrary cost matrix can be normalized to become a cost
matrix satisfying this unity condition.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

TABLE 1
Details of the Data Sets Used in the Experiment

Datasets # Instauces | # Classes # Arttr Default Accuracy %
Echocardiogram 131 2| 1B 6C 67.2
Hepatitis 135 2| 13B 6C 79.4
Heart(Statlog) 270 2 13C 55.6
Heart 303 2 13C 51.1
Horse 368 2| 3B 12N 7C 63.0
Credit 690 2| 4B 3N 6C 55.5
Breast-W 699 2 9C 65.5
Diabetes 768 2 8C 65.1
GermanCredit 1000 2 24C 70.0
Euthyroid 3163 2| 18B 7C 90.7
Hypothyroid 3163 2| 18B 7C 95.

Coding 20000 2 15N 50.0
Lymphography 148 4| 9B 9N 54.7
Glass 214 6 9C 35.7
Waveform 300 3000 3 40C 33.3
Saybean 683 19 | 16B 19N 238
Annealing 898 6| 19B 13N 6C 76.2
Vowel 990 11 10C 9.5
Splice 3177 3 60N 51.9
Abalone 4177 3 IN 7C 52.7
Nettalk(s) 3438 5 7N 40.1
Satcllite 6435 6 36C 23.8

N-nominal; B-binary; C: Continuous.

weighting method is designed to achieve the aim through high cost
error minimization. All other factors being equal, one tree
induction algorithm is better than another if it induces smaller
trees.

We conduct experiments using 20 data sets obtained from the
UCI repository of machine learning databases [1] and two data sets
with specified cost matrices (i.e., Heart_S and German) used in the
Statlog project [5]. The data sets are selected to cover a wide variety
of different domains with respect to data set size, the number of
classes, the number of attributes, and the types of attributes. They
consist of 12 two-class data sets and 10 multiclass data sets. The
details of these data sets are given in Table 1.

Ten 10-fold cross-validations® [3] are carried out in each data
set, except in the Waveform data set where randomly generated
training data size of 300 and test data size of 5,000 are used in the
100 trials.

Random cost assignments with the unity condition are used in
all data sets except the Heart_S and German data sets. In the latter
cases, the costs (i.e., cost(1,2) = 1.0 and cost(2,1) = 5.0) specified
in [5] are used. In the former cases, a cost matrix is randomly
generated at the beginning of each trial. Each nondiagonal entry in
the cost matrix is assigned an integer randomly generated between
1 to 10.

We first compare C4.5CS with C4.5 to evaluate whether trees
induced by C4.5CS are more cost sensitive than those produced by
C4.5. Note that the only difference between C4.5CS and C4.5 is the
initial weight setting, so any performance differences are due to this
initial weight setting. Then, we compare C4.5CS to C5 [11] and
other algorithms reported in the Statlog project.

3.1 Can C4.5CS Induce Cost-Sensitive Trees Effectively?

Given a training set and a cost matrix, C4.5CS induces a cost-
sensitive tree which seeks to minimize the number of high cost
errors and total misclassification costs. C4.5 produces a tree which
seeks to minimize the total misclassification errors. Both trees are

4. In a 10-fold cross-validation, the given data set is randomly divided
into 10 equal size subsets. In each fold, nine subsets are used as the training
and the remaining subset as the test set. This is repeated 10 times and each
subset is used as the test set only once.

661

then tested using a separate test set and the total misclassification
costs are measured according to the given cost matrix.

Table 2 presents averages, over 100 trials, for the misclassifica-
tion costs, the tree size, the number of high cost errors, and the
total errors for both C4.5CS and C4.5 in each data set . The ratio
(C4.5CS/C4.5) for each of these measures is also presented—a
value less than 1 represents an improvement due to C4.5CS. The
means of these ratios are given for the 12 two-class data sets as well
as the 10 multiclass data sets.

In terms of misclassification costs, C4.5CS achieves a mean
reduction of 38 percent compared to C4.5 in two-class data sets,
but a mean reduction of only 2 percent in multiclass data sets.

In terms of tree size, C4.5CS produces trees 34 percent smaller
than those produced by C4.5 in two-class data sets, and 15 percent
smaller in multiclass data sets. In only two data sets (Hypothyroid
and Euthyroid) does C4.5CS produce trees which are larger than
those produced by C4.5. This is because the two data sets have
very skewed class distribution; 95.2 percent and 90.7 percent of the
total instances belong to one of the two classes in these two data
sets, respectively. A high cost C(j) assigned to the class which has
a small number of instances effectively reduces the class distribu-
tion skewness, leading to larger trees. Although the costs are
randomly assigned without reference to the original class distribu-
tion, reduction in skewness seems to have a larger effect than
increase in skewness in these two data sets.

C4.5CS makes 65 percent fewer high cost errors than C4.5 in
two-class data sets, but 2 percent more high cost errors in
multiclass data sets. On the other hand, C4.5CS has 41 percent
more errors than C4.5 in two-class data sets, but only 6 percent
more errors in multiclass data sets.

Hypothyroid is the only two-class data set in which C4.5CS has
higher misclassification costs (by 3 percent) than C4.5. While
C4.5CS is able to reduce the number of high cost errors by
19 percent in this highly skewed class distribution data set, the
74 percent increase in total errors outweighs this reduction,
resulting in a net increase in total misclassification costs.

3.2 Minimum Expected Cost Criterion
A simple method of using a minimum error tree for cost-sensitive
classifications is to employ the minimum expected cost criterion in
selecting a predicted class during classification [5]. It is interesting
to find out how the proposed method compares to this simple
method.

The expected misclassification cost for predicting class ¢ with
respect to the instance x is given by:

ECi(z) o Z W;(t(x))cost(i, j), (5)

where t(z) is the leaf of the tree that instance « falls into and T;(t)
is the total weight of class j training instances in node t.

To classify a new instance z using a minimum error tree with
the minimum expected cost criterion, EC;(z) is computed for
every class. The instance z is assigned to class ¢ with the smallest
value for EC;(x); that is, EC;(z) < ECy(z) for all i’ # 1.

A comparison between C4.5CS_mc and C4.5_mc, both using the
minimum expected cost criterion, is presented here. The results in
Table 3 show that it is still better to induce a cost-sensitive tree than
a minimum error tree for cost-sensitive classifications in two-class
data sets, even using the minimum expected cost criterion. Note
that this criterion affects only the classification process, not the
induction process. Thus, the tree size does not change for C4.5CS
and C4.5CS_mc, as well as for C4.5 and C4.5_mc.

It is interesting to know what the effect of the criterion is on
C4.5CS. An experiment using the 12 two-class data sets shows that
the criterion increases, average misclassification cost of C4.5CS by
5 percent but significantly reduces the average number of high cost

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002
TABLE 2
C4.5CS vs. C4.5 in Terms of Misclassification Cost, Tree Size, Number of High Cost Errors and Total Number of Errors
Datasets Cost Tree Size No. HC Errors No. Errors
C4.5CS C4.5 ratio | C4.5CS C4.5 ratio | C4.5CS C4.5 ratio | C4.5CS (4.5 ratio
Echo 79 182 .44 6.0 10.8 .56 0.5 2.5 .22 5.4 4.7 1.15
Hepa 6.0 12.3 .48 9.5 17.0 .56 0.4 1.6 .27 3.9 3.4 1.15
Heart_S 109 17.1 .64 16.7 35.6 .47 1.0 2.8 .37 6.8 5.9 1.15
Heart 14.2 25.2 .56 18.2 39.5 .46 1.1 3.3 .34 8.7 6.6 1.32
Horse 164 21.8 .75 86 11.6 .74 1.1 29 .39 11.6 5.8 2.00
Credit 21.3 36.5 .58 105 33.2 .32 1.5 49 .31 13.7 10.2 1.34
Breast 9.9 144 .69 14.8 23.8 .62 1.0 2.0 .51 4.9 3.6 1.36
Diab. 35.8 69.6 .51 184 419 .44 2.0 94 .21 27.5 19.8 1.39
German 30.3 72.8 .42 2.2 149.3 .01 0.1 114 .01 29.9 272 1.10
Hypo 9.0 8.7 1.03 24.6 12.2 2.02 0.9 1.1 81 4.0 2.3 1.74
Euthyr 20.7 24.2 .85 39.8 253 1.57 2.1 3.3 .64 10.1 6.3 1.60
Coding 942.2 2058.6 .46 302.7 2805.6 .11 22.2 2782 .08 880.8 554.0 1.59
Mean .62 .66 .35 1.41
Lympho 174 18.2 .96 19.0 274 .69 2.9 2.9 1.00 3.3 3.2 1.03
Glass 35.8 384 .93 39.2 455 .86 6.0 6.3 .95 6.9 7.1 .97
Wave 7119.0 7709.3 .92 427 51.0 .84 1177.9 1232.4 .96 1522.1 1522.1 1.00
Soybean 33.8 304 1.11 91.1 964 .95 5.7 5.2 1.11 6.2 5.6 1.11
Anneal 354 357 .99 76.7 76.6 1.00 6.4 6.0 1.06 7.3 6.7 1.09
Vowel 115.1 111.8 1.03 175.2 187.0 .94 19.1 18.2 1.05 21.1 20.3 1.04
Splice 95.7 95.6 1.00 157.1 171.6 .92 16.2 15.3 1.06 227 18.6 1.22
Abalone 708.7 799.2 .89 402.1 579.2 .69 124.6 129.2 .96 168.4 161.9 1.04
Net(s) 507.9 514.2 .99 1650.4 2061.6 .80 86.0 &4.2 1.02 99.6 94.0 1.06
Sat. 475.3 478.5 .99 472.4 561.2 .84 784 785 1.00 88.1 88.1 1.00
Mean .98 .85 1.02 1.06

errors by 60 percent. A direct comparison between C4.5CS and
C4.5_mc shows, that to minimize cost, the instance-weighting
method does more than substitute the minimum expected cost
criterion as the cost ratio for C4.5CS versus C4.5_mc stays at about
the same level shown in Table 3.

3.3 MultiClass Problems

In this section, we study the behavior of C4.5CS using three
different types of cost matrix in the 10 multiclass data sets. We first
define three types of cost matrix, which give rise to different
definitions of C(j). They are defined as follows:

1. cost(i,j) > H only for a single value of i = I and cost(i #
1,j) = H for all i # j. We define

C(j) = cost(I,j) for j # I and C(I) = H.

TABLE 3
Mean Ratios for C4.5CS_mc against C4.5_mc
Two-class | Multi-class
Misclassification Cost ratio .86 .99
Tree Size ratio .66 .85
No. High Cost Errors ratio .36 1.02
No. Errors ratio 1.57 1.07

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA.

2. This type of cost matrix has a constant misclassification
cost for each class, i.e., cost(t,j) = H; > 1.0 for each j # i.
Thus, it can be expressed as a cost vector

C) = H,

7

3. In this more general case, cost(i, j) > 1.0 for all ¢ # j. This
is the type of matrix we used for the previous experiments
and a possible form of C(j) is defined earlier in (4).

Examples of these matrices are shown in Table 4.
For experiments in this section, without loss of generality, we

impose the following unity condition: For Type 1 cost matrix,
H = 1.0, for Type 2 cost matrix, at least one H; = 1.0, and for Type 3
cost matrix, at least one cost(i, j) = 1.0, where the unit cost is the

minimum cost.

TABLE 4

Examples of Three Types of Cost Matrix, cost(i, j)

Type (a) Type (b) Type (c)

J J J
1 2 3 1 2 3 1 2 3
1 00 30 60 1 00 30 70 1 00 30 20
i 2 1.0 00 10 2 10 00 70 2 10 00 7.0
3 1.0 10 00 3 10 30 00 3 100 50 00

Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002 663

TABLE 5
Mean Ratios for C4.5CS against C4.5 Over 10 Multiclass Data Sets
Multi-class
Cost matrix type (a) ib) (¢}
Misclassification Cost ratio S0 | .87 98
Tree Size ratio 7l 0 &5
No. High Cost Frrors ratio .33 90 1.02
No. Frrors ratio 1.30] 1.30 1.06

Table 5 presents the mean ratios for C4.5CS against C4.5 using
the three types of cost.

In comparison to C4.5, C4.5CS performs better in terms of
misclassification costs, tree size, and the number of high cost errors
for all three types of cost matrix, except that it is making 2 percent
more high cost errors when using Type 3 cost matrix. Among these
cost matrices, C4.5, and its cost-sensitive counterpart seem to be
performing most similarly using Type 3 cost matrix, and least
similarly using Type 1 cost matrix. This is evident since the mean
ratios for misclassification costs and the number of high cost errors
increase from Type 1 to Type 2 and to Type 3 cost matrices. This
suggests that the conversion from cost(i, j) to C(j) is most effective
for Type 1 cost matrix but least effective for Type 3 cost matrix.

To maintain generality, we have used Type 3 cost matrix as the
default cost matrix in other parts of this paper.

3.3.1 Summary
We summarize the findings so far as follows:

e In terms of misclassification costs and the number of high
cost errors, C4.5CS performs better than C4.5 in two-class
data sets, but is only comparable for multiclass data sets.

e The relatively poor performance of C4.5CS in multiclass
data sets is due to the conversion of cost matrix to cost
vector.

e (C4.5CS always makes fewer high cost errors than C4.5 in
two-class data sets, but, in data sets with highly skewed
class distribution, C4.5CS might have higher total mis-
classification costs than C4.5.

e (C4.5CS produces smaller trees than C4.5 because instance
weighting effectively increases the skewness of the other-
wise more balanced class distribution.

e Even using the minimum expected cost criterion, it is
better to induce a cost-sensitive tree than to induce a
minimum error tree for cost-sensitive classifications in
two-class data sets. The instance-weighting method
produces an effect that is significantly better than
simply applying the criterion.

3.4 How Does C4.5CS Compare to C5?

In this experiment, we compare C4.5CS to the improved version of
C4.5, C5 [11], which can produce a cost-sensitive tree when given a
cost matrix.

The results in Table 6 show that C4.5CS performs comparably
to C5 in terms of misclassification costs; the mean ratio is .99 over
22 data sets. In only six data sets are the ratios for misclassification
costs outside the range 1.00 & .10.

In terms of tree size, C4.5CS produces smaller trees than those
produced by C5 in 20 out of the 22 data sets. On average, C4.5CS
induces trees which are 14 percent smaller. It is important to note

that the two exceptions, the Annealing and Nettalk(s) data sets, are

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

TABLE 6
Ratios for C4.5CS vs. C5

Datasets Cost | Tree Size No.HC |No.Errors
ratio ratio |Errors ratio ratio

Echocardiogram | 1.04 .94 1.09 1.00
Hepatitis .98 .87 1.00 .97
Heart(Statlog) .94 .80 .83 1.03
Heart .90 .80 .82 1.00
Horse 1.00 .84 1.14 .94
Credit 1.01 .83 .98 1.02
Breast-W 91 .85 87 .98
Diabetes .99 .83 94 1.02
GermanCredit 1.00 .88 71 1.00
Hypothyroid .98 91 1.02 97
Euthyroid 1.04 .89 1.00 1.05
Coding 1.00 .68 91 1.02
Lymphography 97 .72 .70 1.05
Glass .94 .73 .60 1.10
Waveform .82 .68 .63 1.08
Soybean 1.20 91 1.75 1.17
Annealing 1.05 1.08 .89 1.11
Vowel 1.03 .82 45 1.23
Splice 1.12 .66 .70 1.50
Abalone .87 .62 44 1.03
Nettalk(s) 1.14 1.81 .89 1.21
Satellite .87 .70 49 1.09
Mean| .99 .86 .86 1.07

due to a simpler C5 representation for nominal attribute tests next
to the leaves of the tree. In C4.5, when a decision node next to the
leaves is a test using a nominal attribute, the number of leaves is
the same as the number of possible values for this attribute. This
usually results in many leaves with no covered instance, especially
when the nominal attribute has many values. C5 simplifies the
representation by collecting all zero-instance leaves into a single
leaf with a subset branch. When we simplify the C4.5CS
representation, as in C5, the tree sizes reduce from 76.7 to 55.5
for the Annealing data set and from 1650.4 to 566.2 for the
Nettalk(s) data set , which are both smaller than the trees produced
by C5. Taking these new figures into account, the mean ratio for
tree size is reduced from .86 to .80.

Although trees produced by C4.5CS have more misclassifica-
tion errors (i.e., 7 percent on average) than those by C5, C4.5CS is
less likely to make high cost errors. This feature is particularly
important when the aim is to minimize the number of high cost
errors. C4.5CS makes 14 percent fewer high cost errors than C5 on
average. This effect is apparent in 16 out of the 22 data sets.

Unfortunately, no description is given of the cost-sensitive
induction method employed in C5 [11] and we have no access to
source code, except that used for classifying from an induced tree
which is in the public domain. The latter reveals that C5 predicts a
class which has the minimum expected costs, whereas C4.5CS (like
C4.5) predicts a class which has the maximum weights. The

664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

TABLE 7
Average Misclassification Costs for Five Classifers

Dataset C4.5CS C5 CART Discrim NaiveBayes
Heart(Statlog)| 0.404 0.430 10.452(8) 10.393(2) 10.374(1)
GermanCredit| 0.303 0.304 0.613(8) 0.535(1) 0.703(12)

i: the 9-fold cross-validation is used, and others use 10-fold.
(n): ranking in the Statlog project; n=1 is the best result.

significantly smaller trees produced by C4.5CS are also another
indication that the cost-sensitive induction method used in C5 is
different from that in C4.5CS.

3.5 Comparison with the Results from the Statlog Project

The Statlog project [5] studied a number of classifiers for cost-
sensitive classification in the Heart and GermanCredit data sets.
We restate their results for three classifiers for comparison. The
classifiers are CART [3], linear discriminant (Discrim), and
NaiveBayes. The Statlog project uses average misclassification
costs (the ratio of the total misclassification costs and the total
number of test instances) for evaluation. We convert our results for
C45CS and C5 to this measure and the results for the five
classifiers are tabulated in Table 7.

The results show that C4.5CS performs better than CART in
both data sets. It performs marginally worse than Discrim and
NaiveBayes in the Heart data set , but significantly better than both
classifiers in the GermanCredit data set .

4 RELATION TO ALTERED PRIORS

Breiman et al. [3] discuss a method of incorporating variable
misclassification costs via altered priors for cost-sensitive tree
induction. Let priors 7(j) = N;/N and C(j) as defined in (4); then,
the altered priors are given by [3]

_ _CUl) _ _CON,
2 Clo)m(d) - X2 CON;
In the instance-weighting method, every instance is weighted

proportional to C(j). The weight of a class j instance is computed
as

()

CON v ™0
=T ON/N =T

R WG
Thus, the instance weight is a ratio of the altered prior and the

original prior. Both methods share the same idea of changing the
class distribution according to the given misclassification costs, but
one implementation is simpler and more effective than the other.
Implementation using altered priors or by merely modifying
instance weights will produce the same tree at the end of the tree
growing process, but the former would require an equivalent
modification in the pruning process; otherwise, it will perform
poorly. This is demonstrated by modifying C4.5 accordingly to
yield C4.5(7’). Because instance weights are not altered, the tree
induced by C4.5(’) will be pruned according to unit instance

weights.

The mean ratios (C4.5CS/C4.5(n’)) for misclassification cost
and the number of high cost errors are .70 and .43, respectively,
averaged over the 12 two-class data sets. C4.5(«) is significantly
worse than C4.5CS for the two important measures in cost-
sensitive classifications. The poor result of C4.5(7’) is due to the
inconsistent use of instance weights from the tree growing process
to the tree pruning process.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

5 DISCUSSION

The results presented in Table 2 clearly show that the greedy
divide-and-conquer algorithm can effectively induce a cost-
sensitive tree directly from the training set, given a cost matrix.
A previous reported method—cost-sensitive specialization [17],
which also applied to C4.5, only achieves a cost reduction of
3 percent on average over 20 data sets.” This method maintains the
same size of the tree produced by C4.5. In comparison, the
instance-weighting method achieves a 38 percent reduction in
costs and produces trees which are 34 percent smaller in the two-
class data sets.

The idea of using fractional instance weights in decision tree
induction has been applied in C4.5 [9]. In the case of missing value,
C4.5 partitions the training set using fractional weights in
evaluating a test during tree induction and classification. Quinlan
[10] further develops the idea to boosting decision tree algorithms.
In both cases, equal initial weights are used. We extend this idea to
different initial weights, which we demonstrate to be a simple and
viable approach for extending the tree induction algorithm to
include cost-sensitive classifications.

Indeed, the instance-weighting method only requires the
weights to be proportional to the misclassification cost. For
example, instead of (2), one can use w(j) = C(j) to weight the
instances and induce the same cost-sensitive tree as that produced
by C4.5CS. This is fine if the task requires only one tree to be
produced. However, in the case where multiple trees are needed,
as in the case of boosting ([12], [14]) in which it is important to
maintain identical total initial weight for each tree induction, then
(2) is essential to the process.

Pazzani et al. [8] show that trees induced using the Gini criterion
(the test selection criterion as used in CART) with altered priors
perform worse than those induced using only the Gini criterion in
terms of misclassification costs in both two-class and multiclass
data sets. Pazzani et al. [8] attribute the negative result to the
conversion of cost matrix cost(i, j) to cost vector C(j). We disagree
with this explanation, suspecting that their negative result is due to
the use of two different priors in the tree growing and pruning
processes, as shown in our experiment in Section 4. Our results
indicate that a tree induced with altered priors, together with the
corresponding modification in the pruning method, should per-
form better than those without. Also, we think the difference is not
due to the test selection criterion employed (C4.5 uses the entropy
criterion rather than the Gini criterion).

However, the conversion does result in a weakness in the
instance-weighting method. This method will induce the same tree
for different cost matrices whenever these matrices convert to the
same cost vector C(j). This is undesirable for multiclass problems.
While other forms of conversion are possible (for example,
C(j) = maz; cost(i,j)), they suffer from the same problem. One
possible remedy is to conduct tree pruning using cost (i, j) directly.
However, so far we have not found an effective method for this
kind of pruning. Bradford et al. [2] and Knoll et al. [4] studied
several cost-sensitive pruning methods and reported that no
pruning method dominated over all the data sets they studied.
One way to mitigate this problem is to generate multiple trees and
then combine them to produce a final prediction. We have
suggested a cost-sensitive version of boosting [12] to address both
this weakness and the problem with skew class distribution
reported in [15] and [14].

5. There are 10 same data sets which are used in both Webb’s and our
experiments. We use nine data sets of size more than 900, whereas Webb
uses only two.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002 665

There are several tree induction algorithms that consider the
costs of tests, such as EG2 [7], CS-ID3 [13], and IDX [6]. Turney [16]
investigates both the costs of tests and misclassifications using a
genetic algorithmic search in tree induction. We do not consider
costs of tests in this paper to avoid complicating the issue under
investigation.

6 CONCLUSIONS

We have introduced an instance-weighting method to induce cost-
sensitive trees and demonstrated that it is a viable approach, which
is simple to implement or adapt to an existing learning algorithm.
It is a generalization of the standard tree induction process to
include both minimum error trees and minimum high cost error
trees. The instance-weighting method is simpler and more effective
in implementation than an existing method based on altered
priors.

Our empirical results show convincingly that the greedy
divide-and-conquer procedure can effectively induce a truly cost-
sensitive tree directly from the training data. This work refutes an
earlier negative result [8] with regard to cost-sensitive tree
induction employing the greedy divide-and-conquer procedure
in two-class data sets.

The algorithm incorporating the instance-weighting method is
found to be better than the original algorithm in two-class data sets
in terms of the number of high cost errors, total misclassification
costs, and tree size. The instance weighting which changes the
class distribution directly contributes to this improved perfor-
mance.

ACKNOWLEDGMENTS

The author would like to thank the anonymous reviewers, Zijian
Zheng, Geoff Webb, and Albert Goodman for providing helpful
suggestions to improve this paper. The author also would like to
thank Ross Quinlan for providing C4.5.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 24,2010 at 23:08:38 EST from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Blake, E. Keogh, and C.J. Merz, “UCI Repository of Machine Learning
Databases,” Univ. of California, Dept. Information and Computer Science,
http:/ /www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[2] J.P. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C.E. Brodley, “Pruning
Decision Trees with Misclassification Costs,” Proc. 10th European Conf.
Machine Learning, pp. 131-136, 1998.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and
Regression Trees. Belmont, Cailf.: Wadsworth, 1984.

[4] U. Knoll, G. Nakhaeizadeh, and B. Tausend, “Cost-Sensitive Pruning of
Decision Trees,” Proc. Eighth European Conf. Machine Learning, pp. 383-386,
1994.

[S] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, Machine Learning, Neural and
Statistical Classification. Ellis Horwood Limited, 1994.

[6] S.W. Norton, “Generating Better Decision Trees,” Proc. 11th Int'l Joint Conf.
Artificial Intelligence, pp. 800-805, 1989.

[717 M. Nunez, “The Use of Background Knowledge in Decision Tree
Induction,” Machine Learning, vol. 6, pp. 231-250, 1991.

[8] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk, “Reducing
Misclassification Costs,” Proc. 11th Int’l Conf. Machine Learning, pp. 217-225,
1994.

[91 J.R. Quinlan, C4.5: Program for Machine Learning. Morgan Kaufmann, 1993.

[10] J.R. Quinlan, “Boosting, Bagging, and C4.5,” Proc. 13th Nat'l Conf. Artificial
Intelligence, pp. 725-730, 1996.

[11] J.R. Quinlan, “C5,” http://rulequest.com, 1997.

12] RE. Schapire, Y. Freund, P. Bartlett, and W.S. Lee, “Boosting the Margin: A
New Explanation for the Effectiveness of Voting Methods,” Proc. 14th Int’l
Conf. Machine Learning, pp. 322-330, 1997.

[13] M. Tan, “Cost-Sensitive Learning of Classification Knowledge and Its
Applications in Robotics,” Machine Learning, vol. 13, pp. 7-33, 1993.

[14] KM. Ting, “A Comparative Study of Cost-Sensitive Boosting Algorithms,”
Proc. 17th Int’l Conf. Machine Learning, pp. 983-990, 2000.

[15] KM. Ting and Z. Zheng, “Boosting Cost-Sensitive Trees,” Proc. First Int’l
Conf. Discovery Science, pp. 244-255, 1998.

[16] P.D. Turney, “Cost-Sensitive Classification: Empirical Evaluation of a
Hybrid Genetic Decision Tree Induction Algorithm,” J. Artificial Intelligence
Research, vol. 2, pp. 369-409, 1995.

[17] G.I. Webb, “Cost-Sensitive Specialization,” Proc. 1996 Pacific Rim Int’l Conf.
Artificial Intelligence, pp. 23-34, 1996.

> For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

